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Abstract

Alqorithms for determining the generating function and the predictor for

some non-full-rank multivariate stationary stochastic processes are obtained.

In fact it is shown that the well known algorithms given by Wiener and Masani

(1958) for the full-rank case, are valid in certain non-full rank cases exactly

in the same form.
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1. Introduction.

One of the important problems in the prediction theory of multivariate

stationary stochastic processes is to obtain some algorithm for determinq the

best linear predictor in terms of the past observations. Wiener and Masani

[9], [10] solved this problem for the full-rank casewhen the spectral density

f of the processes is bounded above and away from zero, in the sense that

there exist positive numbers c and d such that

(1.1) cl < f(e) < dI.

Masani L2] improved their work substantially showinq that the same aloorithm

is valid if in lieu of (1.1) one assumes that

(1.2) (i) f E L and (ii) f-I L,.

several other authors proved the validity of the same alnorithm under more

neneral settings, cf. for example Salehi [6J, Pourahmadi [8]. However, all,,

these results are under the severe restriction of full-rank and there has been

no extension of Wiener and Masani's algorithm beyond the full-rank case.

The purpose of this note is to show that the aloorithm remains valid ,,'

exactly in the same manner for the non-full-rank processes which satisfy the

followinq conditions
• : L

(i) The ranae of f(O) is constant a.e. (dO),

(1.3) (ii f E =

(iii) f#

where A# stands for the aeneralized inverse (to be defined later) of the matrix

A. In the full-rank case these conditions clearly reduce to the conditions (1.2), and .

p.-.

.- ,- ,- .. - . .. . * . . . ., , - . , . . - . , - . . ' . . . . - . . ,- ., . . . - . - ,. .C- ...



2

hence our result aeneralizes Masani's algorithm in [2].

Masani's assumption and approach rests on a characterization (Theorem

2.4, [2]) for full-rank minimal multivariate stationary stochastic Processes.

Our motivation and assumptions are based on a characterization of Jo-regularity

due to Makagon and Weron [1]. We will employ Wiener and Masani's alqorithm

to find the predictor of an associated full-rank process (to be clarified later),

which is produced using the technique of Salehi and Miamee [5], and usinq this we

will obtain our algorithm for the non-full-rank process.

In section 2 we set down the necessary preliminaries. Section 3 is

devoted to establishing our algorithm for determining the generating function

and in section 4 we will show the validity of Wiener end Masani's aloorithm for

the best linear predictor.

% %

, -.-. .,

r . .. . 4 - *. ,.. * , 4
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2. Preliminaries

In this section we set down notations and preliminaries. Most of these

are standard and can be found in [4], [9] and [10]. Let H be a complex

Hilbert space and q a positive integer. Hq denotes the Cartesian product of
V

q-copies of H, endowed with a Gramian structure as follows: For any two

vectors x (xl ,...x  and y (y...,yq)T in H their Gramian matrix (x,v)

is defined by

(x,y) = [

It is easy to verify that it has the following properties:

(x,y) > 0

(xx) = 0 <-> x = 0

m n m n
A(Xi, BjXj)= Ai(X,Y )B*
i i=l j=l 1 J

where X,Y, XV Y are in Hq , Ai, B. are constant qxq matrices, and A > 0

means A is a non-negative definite matrix. We say that X is orthogonal to Y

if (X,Y) = 0. It is well known that H is a Hilbert space with the inner

product

((X,Y)) trace (X,Y).

A closed subset M of Hq is called a subspace if AX + BY E M, whenever X and Y

are in M, A and B are qxq constant matrices. It is easy to see that M is a

subspace if and only if M = q for some subspace T4 of H. For any X in H

(XIM) denotes the projection of X onto M, and that is the vector whose k-th

coordinate is (X which is the usual projection of X onto the subspace -l .

.c............

. . . . ..-. .-.-* ..* ....,-*-'-, , . =,* - '* -'.. ...'- .,.- ,.,i. .' .i. , i.i." • .:-',"." . - [ '. - "': i'.-" .i' ..: i'i -: .- :
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A bisequence Xn, n E Z, in Hq is called a q-variate stationary stochastic

process if the Gramian (X m, X n) depends only on m - n.

It is well known that every q-variate stationary stochastic procesq X n

has a non-negative matrix valued measure F on [0,271], called its spectral

measure such that

(X , X) = 2r i(m - n)edF(O)"
7)0

f stands for the Radon-Nikodym derivative of the absolutely continuous (a.c.)

part of F with respect to the normalized Lebesgue measure do, and it is called

the spectral density of the process.

To every stationary stochastic process Xn, n Z the following subspaces

are attached:

M(+-) = Sp (Xn , - < n < ), i.e. the subspace of HO

generated by all Xn  n E Z9

M(n) = sp (Xk, -00 < k < n),

M(-oo) = nM(n),
n

M'(n) = sp (Xk, k n).

A q-variate stationary stochastic process is called

(a) non-deterministic if M(+-) # M(n) for some and hence all n in Z,

(b) regular if M(-o) 0

(c) minimal if M(n) i M(+-) for some and hence all n E Z,

(d) Jo-regular if nW(n) = 0.
n N

' , " ""," " " ' " " . ? - . . . - - -.. .- . . . .
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If Xn is non-deterministic then X M(n - 1) for all n, and hence it has

a non-zero one-sided innovation process

gn = X (Xn M(n - 1)).

If X is minimal then X Z M(n) for all n, and hence it has a non-zeron n

two-sided innovation process

n = X - (Xn I W(n)).

The corresponding one-sided and two-sided predictor error matrices are defined

by

G = ( 0, go) and z = (b b0 , )

respectively. XV = (X JM(O)) is called the best linear predictor of log v.

Clearly Xi is non-deterministic if and only if G 0 and minimal if and only

if Z 0. A non-deterministic (regular) process Xn is said to be non-deterministic

(reaular) of full-rank if G is invertible. The process is called full-rank

minimal if it is minimal and its two-sided predictor error matrix Z is

invertible.

It is useful to note that we have the following inclusions between these

various classes of processes

non-deterministic p regular it minimal J o-requl;-r f full-rank minimal.

The last inclusion is a consequence of Theorems 1 and 2 below, and the
S .

others can be easily verified.

'.S.

"* - -,* * - • . ,•• •.. .• ..- . /, * lm " .'. " •", '. ' 9,-,' % ,_ ' " o , *,. ' ,i,-'
.~~~~~.I~~- V : 7 . F i ?,.*
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It is known that

co4

M(n) =sp (g + M(-).
- k=O

Consider G as a linear operator on Cq to Cq , C being the complex plane.

Let J be the matrix of the projection on Cq onto the range of G, and we Dut

+ J)- = H. The normalized one-sided innovations are defined by hn = Hqn

One can show that 14]
co -

':; X~n =kok V hn- k + (XnIM(--)). .-
Xnk=O hk "n"

although Ak s in this decomposition are not unique, the coefficients Ak VU are

in fact unique and this enables us to associate the following function to our

process

¢(eie, :. Ak/eike

k=O

this is called the generating function of the process.

We shall be concerned with the class Lp (I < p < 0) of all qxq matrix

valued functions g on [0,27] whose entries are in the usual Lebesgue space

0+
Lp, L. 2 will denote the subspace of L2 consisting of those matrix valued

functions whose n-th Fourier coefficient vanishes for n < 0, i.e.

j Oeg(e)de =0, for all n < 0.

For any qxq matrix A there exists a uniqu qxq matrix A# such that [7]

AA#A= A, A#AA# = A#

(A#A)* (A#A), (AA#)* AA#.
N %

, 1A
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This matrix A' is called the generalized inverse of A and has the following

further properties

N'(A) : R(A#), R'(A) =N(A

where R(B) and N(B) denote the range and null space of the matrix B, respectively.

For the ease of reference we state the following two theorems which are

due to Masani L2], and to Makagon and Weron l1, respectively.

Theorem 1. Let Xn, n E Z, be a q-variate stationary stochastic process

with spectral distribution F. Xn is full-rank minimal if and only if F

is a.c. and its spectral density f is invertible with f- LL

Theorem 2. Let Xn, n E Z be a q-variate stationary stochastic process

with spectral measure F. The process Xn is J0 -regular if and only if

i) F is a.c. with respect to dO, with spectral density f,

(ii) R(f(e)) is constant a.e. (do),

(iii) f# E L .

N.

U . . , , o. . . .,, , . .. . - , , . , . , w , w ' - ' " - ' - -' , " . W ,- ' .-, .-
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3. Determination of the generatinq function.

In this section we give an algorithm for determininq the aenerating

function of a (not necessarily full-rank) stationary stochastic process. The

result of this section extends Masani's algorithm developed in L2] to the

non-full-rank case. Our technioue is essentially that used by Salehi and

rliamee in [5] where the following formula for the two-sided prediction error

matrix Z of a J0-regular process was obtained

(2T

0

We will continue this work under the assumption that our process is Jo-reular

or equivalently assumin that conditions (i), (ii), and (iii) of Theorem 2 are

valid. Let hl , h2, ... ,h , h ...,h be an orthonormal basis for the29..p p+l'"q

q-dimensional complex Euclidean space Cq such that

R R(f(0)) = sp (h., 1 < i < p) a.e. do),

and

N: R= N(f(e)) : ip (hi, p+l < i < q).

Let el, e2,..., eq be the standard basis of Cq  Define the unitary operator

U on Cq by Uhi = ei, 1 < i < q. Letting R1 = s (ei , 1 < i < p) then

Rpl< i < qi).Umas otD DonoDR1 :s(e i , p+l i Clearly U maps R onto R1 and R" onto R1 and U* maps

R onto R and R' onto R' As usual we will identify any linear operator on C

with its matrix with respect to the standard basis of Cq. By our choice of

U we have

(3.1) MUf)U [= e 0

0
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where o(O) is a pxp non-negative matrix valued function whose rank is a.e.

eaual to p. Let

Y =UXn n c Z
nl n

be a new stationary stochastic process, then we have

1 2ei(m-n)ef(

(Ym, = (UX mUXn ) = U(- ei f(e)de)U*
0

~i ~ ei (m-n)°Uf(e)U*de

0

(3.2) 2 0 e m e 01 de.

0 L0 Oj

This shows that, for p+l < k < q, the k-th component Yk of Yn is zero for all- - nn
n r Z. The p-variate statioanry stochastic process Z = (YYV1 ,. P)T has

.,n n n

snectral density q. Since U takes R onto R and R1 onto Rl , one can see that
01 )#

(3.3) 1 = (UfU*) U*f#U.
0 00

Now since Xn is assumed to be J0 -regular, Theorem 2 implies that f#(e) is

intearable. Thus (3.2) implies that a-l is intearable and hence by Theorem 1,

Z is full-rank minimal.n

We are going to utilize Masani's algorithm to obtain the peneratinq

function ',! and predictor Z of this full.-rank minimal prnress Zn, and then use

this to aet the qenerating function (P and predictor X of our process X The~n
following lemma, which reveals the close tie between Y and P, is crucial in the

development of our algorithm.

' , , -- -.. --- ?'.- " '.'.'. .- .'- -. .- .- . - .. -. - .- ' --.. -..-. -. N-. . -.
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Lemma. Let Xn , n . Z be a Jo-reqular stationary stochastic process with

spectral density f. Let g be the spectral density of the correspondina

full-rank minimal process Zn discussed above. If (D and Y are the aenerating

functions of Xn and Zn respectively then

T o0
=U* U,

0 0

where U is the unitary matrix obtained above.

Proof. We first note that, since D and T as generating functions are

optimal (cf. Lemma 3.7 and Definition 4.1 in [3]). Now from (3.1) we aet

(3.4) f L : (U* U) (U* U)*
0--', 01 0 0

on the other hand

f OP.

Since f has two factors D and

T ,0
- U* U

0 0°

0+0

belonging to L2  to complete the proof it suffices to show that the latter one

is also optimal (cf. uniqueness Theorem 4.4 of [3]). To prove this we first

note that since the 0-th coefficient T+(0) of T is nonneqative definite and

6+ ( ) U * fL °  o

we have



- -- - - ~ ~ ~ I 2 .- ~- PI T-. T 10~j-z W W-z-. _~~W%.,z W* - - - -- a-

+-

On the other hand if

(3.6) f -y L* Y 2

is another factorization of f ,then

Fg9
(3.7) Lo=UfU* =(UYU*)(UYU*)*
but ai YY implies that

01

001

N, is the generating function of Y n' In fact we know that the generating

function (D of a q-variate stationary stochastic process X n is qiven by

ri ne

n=0 n'

where A nos are the coefficients in the representation

'n' A + (XOIM(-oo))
n=0

3of X n in terms of its innovation process

gn = Xn- (XnIM(n-l))

and G = (qO,q 0) is the predictor error matrix. Comparing Zn with Y n [Z nz io
w n

we note that

I'



. 0 . 0 0 0-

YOn=

12 z

'.-'o C o _

0A 0 Z + ( Y ) "Y 01
n=O 0 0 1

Althouah the coefficients 
arising in this sum are 

not unique they will give

us the generatinq function 
uniquely, and we have

n[AZ° 1 F °V
=n-Z-O 0 00 n = L 0  o

D Ie-
10 0 00

oj2eCO n 0 0 [A~~ 0

0 I i nn = 0 Le 0 1 L 0  n = [ 0] 0

* Thus L j is the optimal factor of jg 00"L 3.7) and (3.8) together 
with the

optimal ity of troLo :O
optimaity o

S ~ ~ 0 - . . . .....

'k- 

i
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imply that

+(o) o1 $o) 1 (Uy+(o)U*)(Uy+(o)U*)*.

This in turn implies that ni Iwf °oi !
2= (U* JIU) ((+(0))U U) (U* U) y+(O)y+(O)*.

0 0e000

This together with (3.5) shows that 6 is the optimal factor of f. Thus by

the uniqueness theorem mentioned above

=U~ 0 0] U. Q.E.D.
LO 0

Now we are ready to give the algorithm determining the qenerating function

of our JO-regular q-variate stationary stochastic process Xn* Since f satisfies

the conditions (i), (ii), and (iii) of (1.3) one can see that these imply that

g satisfies the corresponding conditions (i) and (ii) of (1.2).

Thus we can use Masani's algorithm developed in section 4 in [2]

to compute the generating function € of the desired process X via the formula

Remark. One can similarly extend the other available algorithms (such

as that in [8]) to obtain corresponding algorithms for the non-full-rank case.
'p
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4. Determination of the Predictor.

In this section we show that the unique autoregressive series,of [2],
giving the linear predictor in the full-rank case, can be used to obtain the

predictor in our non-full-rank case. In fact as we will see, exactly the

same formula works in this case as well. We continue to assume that the

density f of our stationary stochastic process Xn satisfies conditions (1.3).

Using the notations and results of section 3 we know that

rCI",

and the density g satisfies conditions (i) and (ii) of (1.2). Thus, using the

technique developed in [2] one can show that

v=Evkz k' inH.:.k=O

where

k
Evk = Cv+nDkn

n=0

with Ck and Dk being the k-th Fourier coefficients of T and Y-l respectively.

Now one can easily verify that

A Z~ [ ~v k qf-
= Z k in H

and

(4.1) k Oo] 01 -no

S 0 n=O L o 0 L 0 0

Since Y= UXn' one can also verify that

A A

X = U*Y = U*Y
n n n

£ 'S.
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Hence we have

EU*( Evk 0
k=0 0 0 -

14.2)
. (U* L jU)U*Y-k in H

k=O LO 0

Letting F to bevk

(4.3) F A U* F k U%

we get the following autoregressive series representation for the best linear

predictor X :
V I. F kX

k=O

Now let us examine the coefficients Fvk in (4.3) more carefully. Doin this we

will be able to write Fvk in terms of the Fourier coefficients of the aenerating

function D of our original process Xn rather than that of the auxiliary process

Zn. From (4.2) we can write
n

Fvk U E A 0 U.

Now using (4.1) we have

Fvk = U*( [ CV+n 01 [ On 0] Un-0 0 Oj 0 O

n=O 0 0 0
0U n' oj1 u) (u*U)

Thus
k

FAk = n Mv+nNk n,
n0

'U.,"

. ' k @ , , , , w .- , , " ' ' , ' ' ' ., " " p , " "
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a'.

Mn U n j and Nn=U* 0

0 0L 0  01

-But by the Lemma we have

(4.4) D = U* U and # =U* U.
Lo LO 01

Thus we observe that Mn and Nn are exactly the n-th Fourier coefficients of

(P and D# respectively.

Summarizinq, we have shown that the best linear predictor X can be

written exactly in the same form obtained in [2] for the full-rank processes.

i.e. we have
1 0 k

X = O I M D )x in H
wa k0 n=O v n Dk- n 

where Mn and Nn are the n-th Fourier coefficients of € and its ceneralized

inverse ¢# (instead of 4 and its inverse €-I in the full-rank case).

* -".4 ' • " "• , . w' . " .'. ,,
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